Homedir

Landscape management strategies for multifunctionality and social equity

Landscape management strategies for multifunctionality and social equity
  • The Global Assessment Report on Biodiversity and Ecosystem Services: Summary for Policy-Makers (IPBES, 2019)

  • DeFries, R. & Nagendra, H. Ecosystem management as a wicked problem. Science 356, 265–270 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Turkelboom, F. et al. When we cannot have it all: ecosystem services trade-offs in the context of spatial planning. Ecosyst. Serv. 29, 566–578 (2018).

    Article 

    Google Scholar
     

  • Lee, H. & Lautenbach, S. A quantitative review of relationships between ecosystem services. Ecol. Indic. 66, 340–351 (2016).

    Article 

    Google Scholar
     

  • Bennett, E. M., Peterson, G. D. & Gordon, L. J. Understanding relationships among multiple ecosystem services. Ecol. Lett. 12, 1394–1404 (2009).

    Article 

    Google Scholar
     

  • Goldstein, J. H. et al. Integrating ecosystem-service tradeoffs into land-use decisions. Proc. Natl Acad. Sci. USA 109, 7565–7570 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Vallet, A., Locatelli, B. & Pramova, E. Ecosystem Services and Social Equity: Who Controls, Who Benefits and Who Loses? (CIFOR, 2020); https://doi.org/10.17528/cifor/007849

  • Neyret, M. et al. Assessing the impact of grassland management on landscape multifunctionality. Ecosyst. Serv. 52, 101366 (2021).

  • Linders, T. E. W. et al. Stakeholder priorities determine the impact of an alien tree invasion on ecosystem multifunctionality. People Nat. 3, 658–672 (2021).

    Article 

    Google Scholar
     

  • Herzig, A., Ausseil, A.-G. & Dymond, J. in Ecosystem Services in New Zealand—Conditions and Trends (ed. Dymond, J. R.) 511–523 (Manaaki Whenua Press, 2014).

  • Chan, K. M. A., Shaw, M. R., Cameron, D. R., Underwood, E. C. & Daily, G. C. Conservation planning for ecosystem services. PLoS Biol. 4, e379 (2006).

    Article 

    Google Scholar
     

  • Pennington, D. N. et al. Cost-effective land use planning: optimizing land use and land management patterns to maximize social benefits. Ecol. Econ. 139, 75–90 (2017).

    Article 

    Google Scholar
     

  • Hölting, L. et al. Including stakeholders’ perspectives on ecosystem services in multifunctionality assessments. Ecosyst. People 16, 354–368 (2020).

    Article 

    Google Scholar
     

  • Plieninger, T. et al. Exploring futures of ecosystem services in cultural landscapes through participatory scenario development in the Swabian Alb, Germany. Ecol. Soc. 18, 39 (2013).

    Article 

    Google Scholar
     

  • Tasser, E., Schirpke, U., Zoderer, B. M. & Tappeiner, U. Towards an integrative assessment of land-use type values from the perspective of ecosystem services. Ecosyst. Serv. 42, 101082 (2020).

    Article 

    Google Scholar
     

  • Sayer, J. et al. Ten principles for a landscape approach to reconciling agriculture, conservation, and other competing land uses. Proc. Natl Acad. Sci. USA 110, 8349–8356 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Vallet, A. et al. Linking equity, power, and stakeholders: roles in relation to ecosystem services. Ecol. Soc. 24, 14 (2019).

    Article 

    Google Scholar
     

  • Allan, E. et al. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol. Lett. 18, 834–843 (2015).

    Article 

    Google Scholar
     

  • Hector, A. & Bagchi, R. Biodiversity and ecosystem multifunctionality. Nature 448, 188–190 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Manning, P. et al. Redefining ecosystem multifunctionality. Nat. Ecol. Evol. 2, 427–436 (2018).

    Article 

    Google Scholar
     

  • Raudsepp-Hearne, C., Peterson, G. D. & Bennett, E. M. Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proc. Natl Acad. Sci. USA 107, 5242–5247 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Daniel, T. C. et al. Contributions of cultural services to the ecosystem services agenda. Proc. Natl Acad. Sci. USA 109, 8812–8819 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Gunton, R. M. et al. Beyond ecosystem services: valuing the invaluable. Trends Ecol. Evol. 32, 249–257 (2017).

    Article 

    Google Scholar
     

  • Peter, S., Le Provost, G., Mehring, M., Müller, T. & Manning, P. Cultural worldviews consistently explain bundles of ecosystem service prioritisation across rural Germany. People Nat. 4, 218–230 (2022).

    Article 

    Google Scholar
     

  • Haines-Young, R. & Potschin, M. in Ecosystem Ecology (eds Raffaelli, D. G. & Frid, C. L. J.) 110–139 (Cambridge Univ. Press, 2010).

  • Fischer, M. et al. Implementing large-scale and long-term functional biodiversity research: the Biodiversity Exploratories. Basic Appl. Ecol. 11, 473–485 (2010).

    Article 

    Google Scholar
     

  • Wilson, E. O. Half-Earth: Our Planet’s Fight for Life (Norton, 2017).

  • Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Clapp, J. & Moseley, W. G. This food crisis is different: COVID-19 and the fragility of the neoliberal food security order. J. Peasant Stud. 47, 1393–1417 (2020).

    Article 

    Google Scholar
     

  • Kirwan, J. & Maye, D. Food security framings within the UK and the integration of local food systems. J. Rural Stud. 29, 91–100 (2013).

    Article 

    Google Scholar
     

  • Ellis, E. C. To conserve nature in the Anthropocene, half Earth is not nearly enough. One Earth 1, 163–167 (2019).

    Article 

    Google Scholar
     

  • Boetzl, F. A. et al. A multitaxa assessment of the effectiveness of agri-environmental schemes for biodiversity management. Proc. Natl Acad. Sci. USA 118, e2016038118 (2021).

  • Tyllianakis, E. & Martin-Ortega, J. Agri-environmental schemes for biodiversity and environmental protection: how we are not yet ‘hitting the right keys’. Land Use Policy 109, 105620 (2021).

    Article 

    Google Scholar
     

  • Arroyo-Rodríguez, V. et al. Designing optimal human-modified landscapes for forest biodiversity conservation. Ecol. Lett. 23, 1404–1420 (2020).

    Article 

    Google Scholar
     

  • Gilroy, J. J. et al. Cheap carbon and biodiversity co-benefits from forest regeneration in a hotspot of endemism. Nat. Clim. Change 4, 503–507 (2014).

    Article 

    Google Scholar
     

  • Lindenmayer, D. B. et al. Avoiding bio-perversity from carbon sequestration solutions: avoiding bio-perversity in carbon markets. Conserv. Lett. 5, 28–36 (2012).

    Article 

    Google Scholar
     

  • Stoll-Kleemann, S. & O’Riordan, T. in The Encyclopedia of the Anthropocene Vol. 3 (eds DellaSala, D. A. & Goldstein, M. I.) 347–353 (Elsevier, 2018).

  • Schaich, H., Bieling, C. & Plieninger, T. Linking ecosystem services with cultural landscape research. GAIA 19, 269–277 (2010).

    Article 

    Google Scholar
     

  • O’Connor, L. M. J. et al. Balancing conservation priorities for nature and for people in Europe. Science 372, 856–860 (2021).

    Article 

    Google Scholar
     

  • Büscher, B. et al. Half-Earth or Whole Earth? Radical ideas for conservation, and their implications. Oryx 51, 407–410 (2017).

    Article 

    Google Scholar
     

  • van der Plas, F. et al. Towards the development of general rules describing landscape heterogeneity–multifunctionality relationships. J. Appl. Ecol. 56, 168–179 (2019).

    Article 

    Google Scholar
     

  • Almeida, I., Rösch, C. & Saha, S. Converting monospecific into mixed forests: stakeholders’ views on ecosystem services in the Black Forest Region. Ecol. Soc. 26, 28 (2021).

  • Meyer, M. A. & Früh-Müller, A. Patterns and drivers of recent agricultural land-use change in southern Germany. Land Use Policy 99, 104959 (2020).

    Article 

    Google Scholar
     

  • Kastner, T. et al. Global agricultural trade and land system sustainability: implications for ecosystem carbon storage, biodiversity, and human nutrition. One Earth 4, 1425–1443 (2021).

  • Rasmussen, L. V. et al. Social–ecological outcomes of agricultural intensification. Nat. Sustain. 1, 275–282 (2018).

    Article 

    Google Scholar
     

  • Lindborg, R. et al. How spatial scale shapes the generation and management of multiple ecosystem services. Ecosphere 8, e01741 (2017).

    Article 

    Google Scholar
     

  • Duarte, G. T., Santos, P. M., Cornelissen, T. G., Ribeiro, M. C. & Paglia, A. P. The effects of landscape patterns on ecosystem services: meta-analyses of landscape services. Landsc. Ecol. 33, 1247–1257 (2018).

    Article 

    Google Scholar
     

  • Le Provost, G. et al. The supply of multiple ecosystem services requires biodiversity across spatial scales. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01918-5 (2022).

  • Martin, D. A. et al. Land-use trajectories for sustainable land system transformations: identifying leverage points in a global biodiversity hotspot. Proc. Natl Acad. Sci. USA 119, e2107747119 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Seabloom, E. W., Borer, E. T. & Tilman, D. Grassland ecosystem recovery after soil disturbance depends on nutrient supply rate. Ecol. Lett. 23, 1756–1765 (2020).

    Article 

    Google Scholar
     

  • Messinger, J. & Winterbottom, B. African forest landscape restoration initiative (AFR100): restoring 100 million hectares of degraded and deforested land in Africa. Nat. Faune 30, 14–17 (2016).


    Google Scholar
     

  • Whittingham, M. J. The future of agri-environment schemes: biodiversity gains and ecosystem service delivery? J. Appl. Ecol. 48, 509–513 (2011).

    Article 

    Google Scholar
     

  • Le Clec’h, S. et al. Assessment of spatial variability of multiple ecosystem services in grasslands of different intensities. J. Environ. Manage. 251, 109372 (2019).

    Article 

    Google Scholar
     

  • Forschungsethische Grundsätze und Prüfverfahren in den Sozial‐ und Wirtschaftswissenschaften Output 9, Berufungsperiode 5 (German Data Forum, 2017).

  • Strukturdaten Reutlingen—Statistisches Bundesamt (Bundeswahlleiter, 2020); https://www.bundeswahlleiter.de/europawahlen/2019/strukturdaten/bund-99/land-8/kreis-8415.html

  • Strukturdaten Uckermark—Statistisches Bundesamt (Bundeswahlleiter, 2020); https://www.bundeswahlleiter.de/europawahlen/2019/strukturdaten/bund-99/land-12/kreis-12073.html

  • Strukturdaten Unstrut-Hainich-Kreis—Statistisches Bundesamt (Bundeswahlleiter, 2020); https://www.bundeswahlleiter.de/europawahlen/2019/strukturdaten/bund-99/land-16/kreis-16064.html

  • Blüthgen, N. et al. A quantitative index of land-use intensity in grasslands: integrating mowing, grazing and fertilization. Basic Appl. Ecol. 13, 207–220 (2012).

    Article 

    Google Scholar
     

  • Ostrowski, A., Lorenzen, K., Petzold, E. & Schindler, S. Land use intensity index (LUI) calculation tool of the Biodiversity Exploratories project for grassland survey data from three different regions in Germany since 2006, BEXIS 2 module. Zenodo https://doi.org/10.5281/zenodo.3865579 (2020).

  • Schall, P. et al. The impact of even‐aged and uneven‐aged forest management on regional biodiversity of multiple taxa in European beech forests. J. Ecol. 55, 267–278 (2018).

  • Statistisches Jahrbuch über Ernährung, Landwirtschaft und Forsten der Bundesrepublik Deutschland Vol. 63 (Bundesministerium für Ernährung und Landwirtschaft, 2019).

  • Simons, N. K. & Weisser, W. W. Agricultural intensification without biodiversity loss is possible in grassland landscapes. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-017-0227-2 (2017).

  • Zinke, O. Heupreise steigen: Futter für die Bauern knapp und teuer. Agrarheute https://www.agrarheute.com/markt/futtermittel/heupreise-steigen-futter-fuer-bauern-knapp-teuer-571946 (2020).

  • Bois de Chez Nous (Lignum, 2021); https://www.lignum.ch/files/images/Downloads_francais/Shop/20010_Bois_de_chez_nous.pdf

  • German Timber Company—Internationaler Holzhandel (German Timber Company, 2021); https://www.germantimber.company/. Accessed 2021-11-24

  • Holzeinschlag nach Holzartengruppen, Holzsorten, ausgewählten Besitzarten (Statistisches Bundesamt, 2022); https://www.destatis.de/DE/Themen/Branchen-Unternehmen/Landwirtschaft-Forstwirtschaft-Fischerei/Wald-Holz/Tabellen/holzeinschlag-deutschland.html

  • Jahresjagdstrecke Bundesrepublik Deutschland, 2019–2020 (Deutsche Jagdverband, 2020); https://www.jagdverband.de/sites/default/files/2021-01/2021-01_Infografik_Jahresjagdstrecke_Bundesrepublik_Deutschland_2019_2020.jpg

  • Heinze, E. et al. Habitat use of large ungulates in northeastern Germany in relation to forest management. For. Ecol. Manage. 261, 288–296 (2011).

    Article 

    Google Scholar
     

  • Conant, R. T., Cerri, C. E. P., Osborne, B. B. & Paustian, K. Grassland management impacts on soil carbon stocks: a new synthesis. Ecol. Appl. 27, 662–668 (2017).

    Article 

    Google Scholar
     

  • Hermes, J., Albert, C. & von Haaren, C. Mapping and Assessing Local Recreation as a Cultural Ecosystem Service in Germany. UVP-Report https://doi.org/10.17442/uvp-report.034.08 (2020).

  • Hermes, J., Albert, C. & von Haaren, C. Assessing the aesthetic quality of landscapes in Germany. Ecosyst. Serv. 31, 296–307 (2018).

    Article 

    Google Scholar
     

  • Ehrhart, S. & Schraml, U. Perception and evaluation of natural forest dynamics. Allg. Forst Jagdztg. 185, 166–183 (2014).


    Google Scholar
     

  • Villanueva-Rivera, L. J. & Pijanowski, B. C. soundecology: Soundscape ecology. R package version 1.3.3 (2018).

  • Meyer, S., Wesche, K., Krause, B. & Leuschner, C. Dramatic losses of specialist arable plants in central Germany since the 1950s/60s—a cross-regional analysis. Divers. Distrib. 19, 1175–1187 (2013).

    Article 

    Google Scholar
     

  • Sasaki, K., Hotes, S., Kadoya, T., Yoshioka, A. & Wolters, V. Landscape associations of farmland bird diversity in Germany and Japan. Glob. Ecol. Conserv. 21, e00891 (2020).

    Article 

    Google Scholar
     

  • Peña, L., Casado-Arzuaga, I. & Onaindia, M. Mapping recreation supply and demand using an ecological and a social evaluation approach. Ecosyst. Serv. 13, 108–118 (2015).

    Article 

    Google Scholar
     

  • Schägner, J. P., Brander, L., Paracchini, M.-L., Hartje, V. & Maes, J. Mapping recreational ecosystem services and its values across Europe: a combination of GIS and meta-analysis. In European Association of Environmental and Resource Economists 22nd Annual Conference (2016).

  • R Core Team. R: A Language and Environment for Statistical Computing v.4.2.1 (R Foundation for Statistical Computing, 2022).

  • Rust Programming Language https://www.rust-lang.org/ v 1.44

  • Le Provost, G. et al. Contrasting responses of above- and belowground diversity to multiple components of land-use intensity. Nat. Commun. 12, 3918 (2021).

    Article 

    Google Scholar
     

  • Gini, C. On the measurement of concentration and variability of characters (English translation from Italian by Fulvio de Santis in 2005). Metron 63, 1–38 (1914).

  • Leave a Reply